Hilbert–Schmidt component analysis

نویسندگان

  • Povilas Daniušis
  • Pranas Vaitkus
  • Linas Petkevičius
چکیده

We propose a feature extraction algorithm, based on the Hilbert–Schmidt independence criterion (HSIC) and the maximum dependence – minimum redundancy approach. Experiments with classification data sets demonstrate that suggested Hilbert–Schmidt component analysis (HSCA) algorithm in certain cases may be more efficient than other considered approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

Measuring Statistical Dependence with Hilbert-Schmidt Norms

We propose an independence criterion based on the eigenspectrum of covariance operators in reproducing kernel Hilbert spaces (RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt norm of the cross-covariance operator (we term this a Hilbert-Schmidt Independence Criterion, or HSIC). This approach has several advantages, compared with previous kernel-based independence criteria. Fir...

متن کامل

A note on the Young type inequalities

In this   paper,  we   present  some  refinements  of the   famous Young  type  inequality.   As  application  of   our   result, we  obtain  some  matrix inequalities   for   the  Hilbert-Schmidt norm  and   the  trace   norm. The results    obtained   in  this  paper  can  be   viewed   as  refinement  of  the   derived  results   by  H.  Kai  [Young  type  inequalities  for matrices,  J.  Ea...

متن کامل

Kernel Measures of Independence for non-iid Data

Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this criterion to deal with structured and interdependent observations. This is achieved by modeling the structures using undirected graphical models and comparing the Hilbert space embeddings of distributions. We apply this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016